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Abstract

We investigated the shear-induced phase separation and/or concentration fluctuation phenomena in semidilute polymer solution by using
computer simulation in 3-dimensional space with DoieOnuki theory. The enhancement of the concentration fluctuations occurs under shear
flow and the scattering function in qxeqz plane exhibits the so-called butterfly pattern as observed experimentally, where qx and qz are the com-
ponents of the scattering vector for flow direction and neutral direction, respectively. The time changes in the peak position and the intensity at
peak position in the scattering function in qxeqz plane can be divided into two regions: the peak position becomes smaller and the peak intensity
increases with t, and then the peak position and intensity become constant and the system reaches its steady state. These agree with the exper-
imental results qualitatively. However, the computer simulation results indicate that the peak position at the steady state is almost independent of
the shear rate, while the decrease in the peak position at steady state with shear rate has been observed experimentally. This disagreement
originates from the use of the simplest constitutive equation in the computer simulation.
� 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

When shear flow is imposed to a semidilute polymer solu-
tion at its one phase region, the solution exhibits strong turbid-
ity. This phenomenon is called shear-induced concentration
fluctuation and/or phase separation and one of the remarkable
properties of dynamically asymmetric binary systems where
each component of the systems differs in the dynamical prop-
erties such as the self-diffusion coefficient and viscosity. In
such systems, ‘‘dynamical coupling between stress and diffu-
sion’’ [1] strongly affects the dynamics of the concentration
fluctuations in the systems. The dynamical coupling arises
from the spatial heterogeneity of the stress field associated
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with the thermal concentration fluctuations in the systems.
The heterogeneity of the stress field influences the dynamics
of the concentration fluctuations through the variation of the
free energy function by the inhomogeneity. This coupling
causes the following interesting phenomena as well as the
shear-induced concentration fluctuations and/or phase separa-
tion of our interest in this work: nonexponential time correla-
tion function of the concentration fluctuations was observed by
dynamic light scattering in one phase region of the semidilute
polymer solutions [2e5], the strong q�2 dependence of the
Onsager kinetic coefficient due to the suppression of the diffu-
sion by the coupling was found in the early-stage spinodal de-
composition in the dynamically asymmetric systems [5e8],
and a sponge-like network structure appears during the later-
stage spinodal decomposition [9,10].

Experimentally, the shear-induced concentration fluctua-
tions and/or phase separation of the semidilute solutions has
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been observed mainly by light scattering (LS) [11e14] and
small-angle neutron scattering (SANS) [14e17]. Saito and
Hashimoto explored that there are two characteristic shear
rates regarding the shear-induced structure formation observed
in the qxeqz plane as a function of _g [18]. Here q is the scat-
tering wave vector and the magnitude q of q is defined as
q¼ (4p/l)sin(q/2) with l and q being the wavelength of the in-
cident beam and the scattering angle in the medium, respec-
tively. The coordinates x, y, and z indicate, respectively, the
flow direction, the velocity gradient direction and neutral di-
rection and qx, qy, and qz are the respective components of
q. One is _gcx at which the LS intensity along the flow direction
(qx) starts to increase in the qxeqz plane. At higher _g than _gcx,
the unique scattering so-called ‘‘butterfly pattern’’, a pair of
symmetric wings along qx direction, appeared in the qxeqz

plane. Another is _gcz, at which the LS intensity along qz starts
to increase [15,17]. _gcz is believed to be a shear rate from
which the shear-induced instability starts to occur. In our pre-
vious studies [18,19], we have elucidated the temperature and
concentration dependences of _gcx for a given solvent and the
solvent quality dependence of _gcx. Wu et al. found an increase
in the scattered intensity in the qxeqz plane with LS [11] under
shear field. In the qxeqz plane, the scattered intensity was
enhanced in the first and third quadrants of qxeqz plane.

Theoretically, Helfand and Fredrickson [20], Milner [21],
and Onuki [22] (HFMO) have developed the dynamical equa-
tion of the concentration fluctuations. The equation includes
the gradient term of the stress tensor as well as Ginzburge
Landau type free energy functional to account for the stresse
diffusion coupling. Milner [21], and Ji and Helfand [23]
calculated the structure factor by using linearized HFMO
theory, and found the increase in structure factors under
shear flow. We also calculated the structure factor by using the
linearized theory with the KayeeBKZ constitutive equation to
express the non-Newtonian behavior and the normal stress ef-
fect [24] and found the butterfly pattern in the qxeqz plane
which is observed experimentally above the critical shear rate.

The computer simulation including the nonlinear term of
HFMO theory has been done by Onuki et al. [25] and Okuzono
[26]. Onuki et al. have numerically integrated HFMO theory
while Okuzono used the smoothed particle hydrodynamics
method to investigate shear-induced phase separation. They
observed that the shear-induced phase separation occurs under
shear flow in their simulations. However, they did computer
simulation in 2-dimensional space and observed the concentra-
tion fluctuation field and the structure factor in the x (flow di-
rection)�y (velocity gradient direction) plane. On the other
hand, we observed the shear-induced concentration fluctua-
tions and/or phase-separation phenomena by using scattering
techniques in qxeqz plane, in real experiments. The unique but-
terfly scattering pattern is observed in this qxeqz space in real
experiments. The computer simulations in 2-dimensional space
are, thus, not sufficient to compare the results of the simulation
of the real experiments. Therefore, in this study, in order to
enable us to compare between them, we shall present the com-
puter simulation based on a time-dependent GinzburgeLandau
type equation proposed by HFMO in 3-dimensional space. In
Section 2, we will present the dynamical equation including
the stressediffusion coupling and the reduced equations used
in the simulation. In Section 3, we will show the simulation
results in real and reciprocal spaces under various shear rates.
Finally we will conclude our results in Section 4.

2. Simulation scheme

In this section, we will present a dynamic model of a semi-
dilute polymer solution in which the polymer volume fraction
f satisfies f> fc and f� 1 with fc¼ N�1/2 and N being, re-
spectively, the critical volume fraction of the system and the
polymerization index [27]. We introduce a tensor variable
W
$

, called the conformation tensor, to represent chain deforma-
tions. In terms of f and W

$
, the free energy is given by

[21,22,25,28]

Fff;W
$
g¼
Z

dr

�
f ðfÞþ1

2
CðfÞjVfj2þ1

4
GðfÞ

X
ij

�
Wij�dij

�2

�

ð1Þ
Here

f ðfÞy
�

kBT

v0

��
f ln f

N
þ
�

1

2
� c

�
f2þ 1

6
f3

�
ð2Þ

is the FloryeHuggins free energy density where v0 and c are,
respectively, the volume of a monomer and the Florye
Huggins interaction parameter per monomer [27]. In the sec-
ond term, C(f) is proportional to f�1 from scaling theory.
The last term expresses the elastic energy of the entangled
polymer network with G(f) being the plateau modulus of
the entangled polymer network at f. The f-dependence
G(f) is given by

GðfÞ ¼ G0

kBT

v0

f3; ð3Þ

where G0 is the plateau modulus at bulk state. For simplicity
we assume that the deviation of W

$
from the equilibrium value

I
$

(¼ unit tensor) is so small that the elastic free energy is bi-
linear in W

$
� I
$

. Since the motion of W
$

is determined by the
polymer velocity vp its simplest dynamics equation is given
by [22,28,29]
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where Dij ¼ vvpi=vxj is the gradient tensor of vp and D
$

T is the
transposed tensor of D

$
. The relaxation time t(f) corresponds

to the longest relaxation time of the solution at f and its
f-dependence is given by

t¼ t0f3; ð5Þ

where t0 is the longest relaxation time at bulk state. From
Eqs. (1) and (4) we may calculate free energy changes against
infinitesimal motion of the network to obtain the network
stress
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In the case when the deformation rate of the polymer or the
shear rate _g is much slower than t�1, we have Wij � dijy
tðDij þ DjiÞ and obtain the Newtonian viscosity hp ¼
GðfÞtðfÞ which is supposed to be much larger than the sol-
vent viscosity h0 in the semidilute case. On the other hand,
in the case when the deformation rate of polymer or the shear
rate _g is much faster than t�1, the solution behaves as a gel
and Wij � dij y ðvupi=vxj þ vupj=vxiÞ, where up is the time
integral of vp and the displacement of the network.

The solvent velocity vs and the polymer velocity vp are
different when the diffusion is taking place. The volume frac-
tion is convected by vp as

v

vt
f¼�V,

�
fvp

�
: ð7Þ

For slow motions we may neglect the acceleration of the
average velocity v ¼ fvp þ ð1� fÞvs to obtain

h0V2v¼ V,
�
CðVfÞðVfÞ� s

$
p

	
t

ð8Þ

where ½/�t denotes taking the transverse part. For simplicity
we assume that the mass densities of the pure polymer
and solvent are the same and that the fluid is incompressible,
so V,v ¼ 0 holds. Furthermore, on the assumption that
the network stress acts on the polymer and not directly on
the solvent [1], a two fluid model gives the relative velocity
w ¼ vp � vs as
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where zðfÞ is the friction coefficient and is given by

zðfÞ ¼ 6ph0a�2f2 ð10Þ

with a being the statistical segment length of the polymer. The
last two terms in Eq. (9) show how diffusion is influenced by
viscoelasticity. We numerically integrate Eqs. (4) and (7) on
a 64� 64� 64 cubic lattice as shown in Fig. 1. We employed
the periodic boundary condition for x and z axes and Leese
Edwards boundary condition for y axis. Note that v and w
have been expressed in terms of f and Wij. We used the re-
duced variables for space, time and volume fraction with the
units of the correlation length of the concentration fluctuations
x defined by

x¼ Rg

�
2f0ff0 þf�1

0 � 2ðc� cSÞg
	�1=2

; ð11Þ

the characteristic time t0 defined by
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x2ffiffiffi

6
p
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and the critical volume fraction fc, where Rg, f0, c, cS, and D
are, respectively, the radius of gyration of the polymer, the
space-averaged f(r), FloryeHuggins interaction parameter,
FloryeHuggins interaction parameter at spinodal point, and
the translational diffusion coefficient of the polymer. In order
to use the similar condition with previous experiments [18],
we set N¼ 5.25� 104, f0¼ 6.4, fc¼ 6.4N�1/2, the reduced
longest relaxation time at f0 ~t ¼ t0f3

0=t0 ¼ 10, the reduced
plateau modulus at bulk state ~G0 ¼ 10, and d~c ¼
N1=2ðc� cSÞ ¼ 0:6, where ~G0 is defined by

~G0 ¼
G0v0

kBTf2
0N1=2 ~f0þ ~f�1

0 � 2d~c
� � ð13Þ

with ~f0 ¼ f0=fc. The grid size is D~r ¼ Dr=x ¼ 1 and the time
step is D~t ¼ Dt=t0 ¼ 1:0� 10�3. In the initial state at the re-
duced time ~t ¼ t=t ¼ 0, f(r) at each lattice point is given by
a Gaussian random number with h½ðfðrÞ � f0Þ=f0�2i ¼ 0:01.

3. Results and discussion

Fig. 2 shows the time change in the concentration fluctua-
tions in 3-dimensional space under no shear flow (a) and shear
flow with reduced shear rate _gt0 ¼ 0:05 (b). In the case of the
simulation without shear flow, the initial concentration disap-
pears in the field and its distribution becomes narrower with
time. It is expected that the distribution becomes zero at
long time limit since the effects of thermal noise are neglected
in this simulation. On the other hand, in the case of the simu-
lation under the shear flow with _gt0 ¼ 0:05, the concentration

x

z

y

Fig. 1. Coordinates of the computer simulation in 3-dimensional space. x, y,

and z axes correspond to velocity, velocity gradient, and neutral directions,

respectively.
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(a) γt0=0

(b) γt0=0.05

0.998 1.0021.000

t=45~t=30~t=15~t=0~

Fig. 2. Time changes in the concentration fluctuations in 3-dimensional space at (a) _gt0 ¼ 0 and (b) _gt0 ¼ 0:05. The coordinate direction is defined in the figure.

x, y, and z axes correspond to velocity, velocity gradient, and neutral directions, respectively.
fluctuations appear and coarsen with time, indicating that the
shear-induced phase separation occurs under shear flow.

Let us focus on the time changes in the scattering functions
and the corresponding cross-sections of real space images of
the concentration fluctuations. In the case of the simulation
without shear flow, we did not observe the decay in the scat-
tered intensity in qxeqy and qxeqz planes although we do
not show the results of the simulation without shear flow
here. The corresponding cross-sections of real space images
in xey and xez planes also do not have any correlated
fluctuations.

On the other hand, as shown in Fig. 3, the increase in the
scattering function in both planes is observed under the shear
flow with _gt0 ¼ 0:05. In qxeqy plane, which corresponds to
that usually observed by light scattering experiment, the scat-
tered intensity increases along qz¼ 0 with time and the peaks
along qz¼ 0 appear and shift towards smaller q with time. The
scattering distribution at ~t ¼ 45 exhibits so-called ‘‘butterfly
pattern’’ which is a unique one observed in the shear-induced
phase-separation phenomena. The time change in the scatter-
ing pattern is qualitatively in agreement with those in experi-
mental results of semidilute PS/DOP solutions. The time
changes in the cross-sections of real space images of xez
plane also show that the wavelength and amplitude of the con-
centration fluctuations grow with time. The orientation of con-
centration fluctuations aligned perpendicular to the shear flow
at ~t ¼ 45, which agrees with the structure factors. In qyeqz

plane, the similar peaks develop and shift towards smaller q
along qy¼ 0. The enhancement of the structure factors is ob-
served in the first and third quadrants of qxeqz plane, agreeing
with the experimental results [11]. The corresponding
cross-sections of the real space images of xey plane also
exhibit the tilted domain structures. This tilting is caused by
the effects of the shear stress discussed previously [24].

Fig. 4 shows the changes in the peak position, qm, of the scat-
tering patterns and peak intensity, Im, with time. The time
changes can be classified into two regions. In earlier time region
~t < 60, qm decreases while Im increases with time. Although the
variation of qm and Im with time is small, we fitted the time
changes in qm and Im with the following power laws to charac-
terize the tendency of the time changes:

qmw~t�a; Imw~tb; ð14Þ

and evaluated a¼ 0.23 ð20 < ~t < 60Þ and b¼ 3.7 ð20 < ~t <
50Þ for _gt0 ¼ 0:05. These time changes are due to the evolu-
tion of both amplitude and wavelength of the concentration
fluctuations with time. In the later time region, ~t > 60, qm

and Im become almost independent of time since the system
has reached the steady state under shear flow. This behavior
agrees with the experimental result qualitatively. However,
the power laws of qm and Im to ~t are different from those ob-
tained from the experiment by Kume et al. [30] (a¼ 1.11 and
b¼ 4.65). This is due to the fact that we used the constitutive
equation expressed by Eq. (4) although we have to use the the-
ory which can be well expressed by the viscoelastic behavior
of polymer solution such as MeadeLarsoneDoi constitutive
equation [31].

Fig. 5 shows the shear rate dependence of the structure
factors in qxeqz plane and the corresponding cross-section im-
ages in xez plane. The structure factors are enhanced and the
wings of butterfly patterns are spread more widely along qz
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(a) qx-qz plane
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Fig. 3. Time changes in (a) the 2-dimensional structure factors in qxeqz plane and the cross-sections of the concentration fluctuations at y¼ 32 in xez plane, and

(b) the 2-dimensional structure factors in qxeqy plane and the cross-section of the concentration fluctuations at z¼ 32 in xey plane at _gt0 ¼ 0:05.
direction with _g, which agree with the experimental results.
The peak intensity Im at steady state increases with _g while
the peak position of the scattered intensity qmc,z along qz

axis at steady state seems to be independent of _g. As for the
cross-section, the amplitude of the concentration fluctuations
increases with _g, which coincides with the _g dependence of
the structure factors. Fig. 6 shows the shear rate dependence
of qmc,z. qmc,z is almost independent of _g, which does not agree
with the experimental results where qmc,z decreases with _g.
Saito et al. reported that the increase in qmc,z with _g was found
as the result of the calculation of the linearized theory of Doie
Onuki theory including BKZ-type constitutive equation for
viscoelasticity contrary to the experimental results [24]. As
suggested by Saito et al., this disagreement is due to the fact
that the nonlinear term in thermodynamic term is neglected
in the calculation [24]. However, even though our simulation
includes the nonlinear term, the results have not agreed with
the experimental results. This is also due to the fact that we
used the simplest constitutive equation.

In the case of a semidilute polymer system subjected to
shear flow, the longest relaxation time tm characterizes the
critical condition of the shear-induced concentration fluctua-
tions and/or phase separation. When the shear rate _g is smaller
than the inverse of the longest relaxation time tm

�1 of the solu-
tion, the local stress originating from the chain stretching is re-
laxed via disentanglement processes or usual translational
diffusion processes of entangled polymers and the stress field
through the free energy functional does not affect the dynam-
ics of the concentration fluctuations, and hence no enhance-
ment of the concentration fluctuations is expected under this
situation. However, when _g is larger than tm

�1, the local stress
cannot be relaxed by disentanglement. Instead, the squeeze of
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solvents to relax the stretching chains occurs in the regions
having more entanglement points and hence larger stress.
This process accompanies a further enhancement of concen-
tration fluctuations. As _g is increased further, the shear-
induced phase separation is eventually brought about. The
global motions of this solvent squeezing are expressed by
the longest relaxation process of polymer chains. However,
local motions of the solvent squeezing such as the retraction
of polymer chains are governed by collective motions of en-
tangled polymer chains. These collective motions are not ex-
pressed in the constitutive equations used in this study. Thus
the collective motions do not reflect the free energy functional
of the system in this simulation so that the simulation results
cannot describe the experimental results quantitatively.

Fig. 4. Peak position qm (open circle) and peak intensity Im (filled triangle) of

the structure factors are plotted as a function of ~t at _gt0 ¼ 0:05. The solid lines

indicate the fitting results with the power laws expressed by Eq. (14).
4. Summary

We investigated the shear-induced phase separation and/or
concentration fluctuation phenomena in semidilute polymer
solution by using computer simulation in 3-dimensional space
with DoieOnuki theory. The enhancement of the concentra-
tion fluctuations occurs under shear flow and the so-called
butterfly pattern appears in qxeqz plane as experimentally ob-
served. The time changes in the peak position and the intensity
at the peak position of the structure factors can be divided into
two regions: the peak position becomes smaller and the peak
intensity increases with t, and then the peak position and inten-
sity become constant, which agrees with the experimental re-
sults. However, the peak position at steady state is independent

Fig. 6. qmc,z at steady state is plotted as a function of _gt0.
(a) t0=0 (b) t0=0.03 (c) t0=0.05

Z

X X

0.0000 0.0022 0.0045

0.9980 1.0000 1.0020

X

qz

qx qx qx

Fig. 5. Structure factors in qxeqz plane and the cross-sections of the concentration fluctuations at y¼ 32 in xez plane in steady state ð~t ¼ 50Þ at (a) 0.01, (b) 0.05

and (c) 0.06 _gt0.
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of shear rate, although the decrease in the peak position with
shear rate has been observed experimentally. This is because
we employed the simplest constitutive equation which cannot
describe the local motions of polymer chains. In order to com-
pare the experiments with the computer simulation, we need to
use the constitutive equation which can describe the rheology
of the semidilute polymer solutions more quantitatively, such
as MeadeLarsoneDoi constitutive equation [31]. This will
be the future work.
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